I am replacing our old frontal solver with Intel MKL pardiso direct solver.
The verification problem is about the P-Delta effects of a cantilevered column.
ref : Wilson, E. L. (2004). Static and Dynamic Analysis of Structures (4th ed., pp. 120-121). Berkeley, CA: Computers and Structures, Inc.
The fully fixed cantilevered-column has the following properties:
Length: L = 10m
Cross-section: 0.1m x 0.1m square
Concrete modulus: E = 30GPa
Axial load: Fv = 4kN (compression)
Lateral load: F = 0.045kN
I use two load steps. Load step 1 yield coorect result. Load step 2 no.
The axial force becomes -5.9998378 using Pardiso linear solver compared to frontal solver of -3.99999.
Ke
0.2999970E+05
0.2999690E-37 0.3000009E+01
-0.9999007E+02 -0.9999073E-40 0.3333302E+01
-0.1800025E-45 0.5000035E+02 0.1499999E-37 0.5066242E+07
-0.5000017E+02 0.1800025E-45 -0.1499989E+05 -0.9493410E-34 0.9999971E+08
-0.1500004E-37 0.1499994E+05 0.0000000E+00 0.3164495E+06 0.3164516E-36 0.9999902E+08
-0.2999970E+05 -0.2999690E-37 0.9999007E+02 0.1800025E-45 0.5000017E+02 0.1500004E-37 0.2999970E+05
-0.2999690E-37 -0.3000009E+01 0.9999073E-40 -0.5000035E+02 -0.1800025E-45 -0.1499994E+05 0.2999690E-37 0.3000009E+01
0.9999007E+02 0.9999073E-40 -0.3333302E+01 -0.1499999E-37 0.1499989E+05 0.0000000E+00 -0.9999007E+02 -0.9999073E-40 0.3333302E+01
-0.1800025E-45 0.5000035E+02 0.1499999E-37 -0.5064576E+07 -0.5506480E-34 0.1835507E+06 0.1800025E-45 -0.5000035E+02 -0.1499999E-37 0.5066242E+07
-0.5000017E+02 0.1800025E-45 -0.1499989E+05 -0.5506480E-34 0.4999986E+08 0.1835519E-36 0.5000017E+02 -0.1800025E-45 0.1499989E+05 -0.9493410E-34 0.9999971E+08
-0.1500004E-37 0.1499994E+05 0.0000000E+00 0.1835507E+06 0.1835519E-36 0.4999942E+08 0.1500004E-37 -0.1499994E+05 0.0000000E+00 0.3164495E+06 0.3164516E-36 0.9999902E+08
Kg
-0.2000007E+00
0.3999987E-43 -0.2400003E+00
-0.1333334E-03 -0.1333343E-45 -0.2399998E+00
-0.8333293E-01 -0.7500035E+00 -0.2499961E+02 -0.1192809E+03
0.6666701E+00 0.2449270E-41 0.1999989E+03 0.8333241E+05 -0.2666664E+07
0.2777794E-03 -0.1999986E+03 0.8333293E-01 -0.9166355E+04 -0.2777777E+03 -0.2666632E+07
0.2000007E+00 -0.3999987E-43 0.1333334E-03 0.8333293E-01 -0.6666701E+00 -0.2777794E-03 -0.2000007E+00
-0.3999987E-43 0.2400003E+00 0.1333343E-45 0.7500035E+00 -0.2449270E-41 0.1999986E+03 0.3999987E-43 -0.2400003E+00
0.1333334E-03 0.1333343E-45 0.2399998E+00 0.2499961E+02 -0.1999989E+03 -0.8333293E-01 -0.1333334E-03 -0.1333343E-45 -0.2399998E+00
-0.1164148E-15 -0.6666701E+00 -0.3492405E-13 0.9428067E+02 0.4166620E+05 0.2083040E+04 0.1164148E-15 0.6666701E+00 0.3492405E-13 -0.1165031E+03
0.6666701E+00 -0.2532604E-41 0.1999989E+03 0.4166620E+05 0.6666659E+06 -0.1388888E+03 -0.6666701E+00 0.2532604E-41 -0.1999989E+03 -0.4166620E+05 -0.2666664E+07
0.3880533E-18 -0.1999989E+03 0.1164148E-15 0.2083040E+04 -0.1388888E+03 0.6666594E+06 -0.3880533E-18 0.1999989E+03 -0.1164148E-15 -0.8749696E+04 0.1388888E+03 -0.2666635E+07
The parameters iparm
iparm( 1) = 1
iparm( 2) = 2
iparm( 4) = 0
iparm( 5) = 0
iparm( 6) = 0
iparm( 8) = 5
iparm(10) = 1
iparm(11) = 1
iparm(13) = 1
iparm(14) = 0
iparm(18) = -1
iparm(19) = -1
iparm(20) = 0
iparm(21) = 0
iparm(22) = 1
iparm(27) = 1
Appreciate advice from some experts