Here is a program that computed 1000 digits of pi in 0.03s on my PC in 14 lines of FORTRAN:
integer vect(3350), buffer(201)
data vect/3350*2/, more/0/
DO 2 n=1, 201
karray = 0
DO 3 L=3350, 1, -1
num = 100000*vect(L) + karry*L
karry = num/(2*L-1)
3 vect(L) = num - karry*(2*L-1)
k = karry/100000
buffer(n) = more+k
2 more = karry - k*100000
write(*,100) buffer
100 format(1x,I1,'.'/(1x,10I5.5))
end
or Fortran (using a variable m instead of l)
implicit none
integer vect(3350), buffer(201), m, n, karry, k, more, num
vect = 2
more = 0
do n=1, 201
karry = 0
do m=3350, 1, -1
num = 100000*vect(m) + karry*m
karry = num/(2*m-1)
vect(m) = num - karry*(2*m-1)
end do
k = karry/100000
buffer(n) = more + k
more = karry - k*100000
end do
write (*,"(1x,I1,'.'/(1x,10I5.5))") buffer
end
with the theory explained in
A Spigot Algorithm for the Digits of π
by Stanley Rabinowitz and Stan Wagon
The American Mathematical Monthly, Vol. 102, No. 3 (Mar., 1995), pp. 195-203
giving output
3.
14159265358979323846264338327950288419716939937510
58209749445923078164062862089986280348253421170679
82148086513282306647093844609550582231725359408128
48111745028410270193852110555964462294895493038196
44288109756659334461284756482337867831652712019091
45648566923460348610454326648213393607260249141273
72458700660631558817488152092096282925409171536436
78925903600113305305488204665213841469519415116094
33057270365759591953092186117381932611793105118548
07446237996274956735188575272489122793818301194912
98336733624406566430860213949463952247371907021798
60943702770539217176293176752384674818467669405132
00056812714526356082778577134275778960917363717872
14684409012249534301465495853710507922796892589235
42019956112129021960864034418159813629774771309960
51870721134999999837297804995105973173281609631859
50244594553469083026425223082533446850352619311881
71010003137838752886587533208381420617177669147303
59825349042875546873115956286388235378759375195778
18577805321712268066130019278766111959092164201989